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Introduction

This project focuses on applying Koopman operator theory to
study classical dynamical systems both theoretically and
numerically. The brief outline of the project splits mainly into the
following two parts,
▶ Theory review/application

▶ Koopman theory
▶ Existing issue and dilemma
▶ Application to DS on finite dimensional space
▶ Application to partial differential equation(PDE)

▶ Numerical implementations in Python
▶ dlkoopman by Galois Inc.1

▶ autokoopman by Ethan James Lew2

▶ Deep-Koopman by Dongyang Kuang3

1https://github.com/GaloisInc/dlkoopman
2https://github.com/EthanJamesLew/AutoKoopman
3https://github.com/dykuang/Deep—-Koopman



Koopman operator theory
Setting for the theory

Let’s first recall that the setting for the Koopman operator theory
can be a continuous dynamical system represented by a system of
ordinary differential equations(ODE),

dx

dt
= F (x), x ∈ M ⊂ Rn (1)

where usually the dynamics F is highly nonlinear.
But the setting definitely needs not to be (1). In particular, it can
be a more sophisticated dynamical system represented by partial
differential equation(PDE) which we shall see later, or a discrete
system.



Koopman operator theory
Importance

Let’s recall one more time that the Koopman operator provides a
way to globally linearize the highly nonlinear dynamics F in (1),
and linearization and doing prediction based on the linearized
dynamics is our ultimate goal! so this demonstrates the
importance of the Koopman operator theory.
Many useful applications based on Koopman operator theory such
as DMD and eDMD were created to do prediction and forecasting
on dynamical systems.



Space of observable

One of most important concept in the Koopman theory, as we
learnt previously, is the so-called space of observable.

Definition: A space of observable, denoted by F , is a function
space which consists of all mappings g from the space M to the
complex plane C.
Example 1: F = C∞(M): The space of all analytic functions
Example 2: F = L2(M): The space of all square-integrable
functions. This is the space that we will use most often through
this whole project! because the Koopman operator defined on it
and associated to a dynamical system with conservative
quantities(i.e. Hamiltonian system) has nice properties.

We next review the definition of the Koopman operator and its
related concepts such as infinitesimal generator and its
eigenfunction.



Koopman operator
Definition: The Koopman operator Kt is a mapping defined on
the space of observable F to F itself, which satisfies the following
condition,

[Ktg ](x) ≡ g
(
T t(x)

)
(2)

for any g ∈ F , and where T t is the time-t flow for (1).

Definition: The infinitesimal generator of the Koopman operator
is a mapping for F to F itself, which is defined as follow. For any
g ∈ F

Ug ≡ lim
t→0

Ktg − g

t
(3)

Based on the above definitions, we have the following lemma
which is very useful.
Lemma: For any g ∈ F ,

∇g · F = Ug (4)

Proof.
See lecture slides. ■



Eigenfunction

Definition: A eigenvalue-eigenfunction pair (λ, ϕ) of the Koopman
opertator associated with (1) is defined as follow,

Ktϕ ≡ eλtϕ (5)

The following theorem is not hard to prove and it also provides a
way to compute the eigenfunction.
Theorem: For each Koopman eigenpair (ϕ, λ),

∇ϕ · F = λϕ (6)

Proof.
Use (4) and (5). ■



Eigenvalue/Eigenfunction relation

We review some important relationship between each eigenvalue
and its associated eigenfunction. The following two theorems which
we had already seen from previous lectures are not hard to prove
but keys to demonstrate some Eigenvalue/Eigenfunction relations.



Eigenvalue/Eigenfunction relation
Continued

Theorem
If (ϕ1, λ1) and (ϕ2, λ2) are two distinct eigenpairs, then
(ϕ1ϕ2, λ1λ2) is also an eigenpair.

Proof.
Suppose (ϕ, λ) is a given eigenpair, then observe that

Kt(ϕ1ϕ2)(x) = (ϕ1ϕ2)(T
t(x))

= ϕ1(T
t(x))ϕ2(T

t(x))

= Kt(ϕ1)(x)Kt(ϕ2)(x)

= λ1ϕ1(x)λ2ϕ2(x)

= λ1λ2ϕ1(x)ϕ2(x)

■



Eigenvalue/Eigenfunction relation
Continued

Theorem
If (ϕ, λ) is an eigenpair, then (ϕr , λr ) is also an eigenpair for any
r ∈ R.

Proof.
Observe that for any r ∈ R,

Ktϕr (x) = ϕr (T t(x))

=
(
ϕ(T t(x))

)r
=
(
Kt(ϕ)(x)

)r
= (λϕ(x))r

= λrϕr (x)

■



Conjugacy

We note also that conjugacy is an important strategy to compute
the eigenfunctions. Let’s review the following theorem,

Theorem
Given two dynamical systems ẋ = F (x) and ẏ = G (y) with
respective flow maps S t and T t , if there exists a C k

diffeomorphism h between the two systems such that
h(S t(x)) = T t(h(x)) then ϕ ◦ h is a eigenfunction associated with
the system ẋ = F (x) whenever ϕ is a eigenfunction associated with
the system ẏ = G (y).

We will see an example about using conjugacy to find the
Koopman eigenfunction for a nonlinear system based on a linear
system where we already know what its eigenfunctions are.



Issue with the spectrum

We have to notice that usually when one tries to compute the
Koopman eigenpair (ϕ, λ) for a given system, it is easy to simply
treat the eigenvalue λ as a free parameter and hence ignore the
fact that only a subset of C can be the eigenvalues for the
Koopman operator.

For most dynamical systems we have encountered, the associated
Koopman operator always has a continuous spectrum. For
example, the Koopman operator associated with the simple
pendulum system which we shall see later only has eigenvalue
which lies on the unit circle of the complex plane C. Identifying
the continuous spectrum for a given system is a very hard task, but
at least this dispels the wrong thought that the Koopman operator
only has point spectrum or the entire C as the eigenvalues.



Issue with the eigenfunction

Besides the issue of the spectrum, the eigenfunction is also
sometimes problematic in the sense that for certain dynamical
systems, the Koopman eigenfunction may not even exist in a
formal sense. In this situation, according to Mezic, we can instead
introduce the concept called eigendistribution/eigenmeasure as a
substitute for the Koopman eigenfunction.

Let’s consider the following example which demonstrates such issue
with the eigenfunction.



Issue with the eigenfunction
Example

Consider the following dynamical system defined on the
action-angle coordinate system (I , θ) ∈ [a, b]× S1,

İ = 0

θ̇ = I
(7)

We observe first that if a Koopman eigenpair (λ, ϕ) exists for (7),
then it has to satisfy

Ktϕ(I , θ) = ϕ(I , θ + It) = e iωtϕ(I , θ) (8)

One may ask why the eigenvalue of Kt has the form e iωt , and this
is due to the fact that the system (7) preserves the Lebesgue
measure µ, and we only restrict the domain of Kt to
L2([a, b]× S1, µ)!



Issue with the eigenfunction
Example(continued)

It is important to note that the only way to make (8) true is to set
t = 0, so this means at any other point which lies on the unit
circle of the complex plane C, there exists no eigenpair (λ, ϕ).

Now, it is the time to extend the eigenfunction to a much broader
scenario.



Eigenmeasure/Eigendistribution
Dirac-delta measure

To define the so-called Koopman eigenmeasure/eigendistribution,
we need to understand first the Dirac-delta ”function”, denoted by
δ(x), which is definied as follow,

δ(x) =

{
∞ if x = 0

0 if x ̸= 0
(9)

Note that it is not a function in a formal sense because no actual
function can satisfy (9), but we can treat it as a measure. Since it
is a measure, we can define integral based on it, which has the
following properties.



Eigenmeasure/Eigendistribution
Dirac-delta measure(continued)

Property 1: the measure satisfies∫ ∞

−∞
δ(dx) = 1 (10)

Property 2: For any continuous function f with compact support
on R, ∫ ∞

−∞
f (x)δ(dx) = f (0) (11)

Property 3 (Translation): For any continuous function f with
compact support on R, and a fixed number y ∈ R,∫ ∞

−∞
f (x)δ(x − y)dx = f (y) (12)

Note: The ”Property 3” is very useful in many fields of analysis.



Eigenmeasure/Eigendistribution
Definition

Definition: The Koopman eigenmeasure or eigendistribution,
associated with the system (7) and denoted by ϕ(I , θ), is defined
as the following variant of the Dirac-delta measure. For a constant
c ∈ R,

ϕ(I , θ) = e iθδ(I − c) (13)

where it must satisfy the following chain of equalities.
For any smooth function w(I , θ) with compact support in
[a, b]× S1,∫

Ktϕ(I , θ)w(I , θ)dIdθ =

∫
ϕ(I , θ + It)w(I , θ)dIdθ

=

∫
e i(θ+It)δ(I − c)w(I , θ)dIdθ

= e ict
∫

ϕ(I , θ)w(I , θ)dIdθ

(14)



Connection to Eigenfunction

For a dynamical system other than (7), we can define the
associated Koopman eigenmeasure/eigendistribution similarly as
(13), but we have to realize that there is a relationship between it
and the Koopman eigenfunction, which is specified by the following
lemma.

Lemma
For a given dynamical system, any associated Koopman
eigenfunction is also eigenmeasure/eigendistribution.

Proof.
Use the definition of eigenfunction and (14). ■

Note: The converse statement is definitely not true since
eigenmeasure/eigendistribution is even not a function in a formal
sense as we discussed before.



Examples

Next, we will switch our focus to some examples of dynamical
system which can be represented by a system of ODE or PDE,
where we actually are able to identify the spectrum of the
associated Koopman operator and to compute analytically its
eigenfunctions.



Linear system

As a warm-up, we first do a quick review on the linear dynamical
system defined on a finite-dimensional state space.
Any continuous linear dynamical system has the following
canonical form

ẋ = Ax (15)

where x ∈ Rn and A is a n × n matrix. For simplicity, we assume
that the matrix A only has simple eigenvalues.
We have already seen from our homework that its primary
eigenfunctions are

ϕn(x) = ⟨x ,wn⟩ (16)

where {wn} is the set of eigenvectors associated with the adjoint
matrix A∗ of A.
We note that for any linear system, the associated Koopman
operator always has a point spectrum which consists of all the
eigenvalues of A.



Linear system
Continued

Recall that once in class we were asked if the primary
eigenfunctions from Eq. (16) are all the Koopman eigenfunctions
for the linear system?
The answer is NO, and it turns out that a linear system can have
more eigenfunctions than these presented in Eq. (16). To see this,
let us look at the following example.



Linear system
Diagonal A

Consider the example for the continuous linear system where the

matrix A in Eq.(15) is diagonal, say A =

[
λ1 0
0 λ2

]
.

Recall from the previous lecture that the primary eigenfunctions
associated with it are simply the coordinate observers, namely

ϕλ1(x , y) = x

ϕλ2(x , y) = y
(17)

On the other hand, we can obtain the eigenfunctions by solving
Eq.(6). Note that we need to impose an initial data curve on (6)
to make it become a Cauchy initial value problem. The initial data
curve Λ = {(x , y , z) = (f1(s), f2(s), h(s))} has to satisfy the
so-called transverse property according to the method that we
used to solve the Cauchy problem.



Linear system
Continued: Diagonal A

By choosing the initial data curve as Λ = {(x , y , z) = (s, 1, h(s))},
the solution to the Cauchy problem reads

ϕλ(x , y) = y

λ

λ2 h

 x

y

λ1

λ2

 (18)

Note that Eq.(18) is only valid for λ = λ1 and λ = λ2, and in
particular when λ = λ2, we have that

ϕλ2(x , y) = yh

 x

y

λ1

λ2

 (19)

A easy observation is that if we choose the initial data h = 1, we
obtain

ϕλ2(x , y) = y (20)

which is one of the primary eigenfunctions.



Linear system
Continued: Diagonal A

Eq.(19) actually demonstrates two key points:
1. The primary eigenfunctions(coordinate observers) are not the
only components in the eigenspace, and in fact there are
uncountably many.
2. Both primary eigenfunctions can be derived from the expression
of the general eigenfunction.

Furthermore, we will see how we need to manipulate the Cauchy
problem which yields a general solution that can be used to derived
the other primary eigenfunction. But the point here is that it is
just the business of choosing the initial data distribution.



Linear system
Continued: Diagonal A

We notice that Eq.(19) can somehow only lead one primary
eigenfunction which is the second coordinate observer. But, if we
change the original initial data curve Λ to
Λ = {(x , y , z) = (1, s, h(s))}, then the solution to the
corresponding Cauchy problem reads

ϕλ(x , y) = x

λ

λ1 h

 y

x

λ2

λ1

 (21)

Similary, Eq.(21) only holds for either λ = λ1 or λ = λ2 and if we
choose λ = λ1 and the initial data h = 1, we get

ϕλ1(x , y) = x (22)



Linear system
A with simple eigenvalues

For a general case where the matrix A is not necessarily diagonal
but still only has simple eigenvalues, the previous reasoning still
applies because of the following theorem,

Theorem
Given two continuous linear dynamical systems,

ẋ = Wx

ẏ = Gy
(23)

they are topologically conjugate if and only if there exists an
invertible matrix P such that

W = PGP−1 (24)

To illustrate this, we consider another example shown in the
following slide.



Linear system
Example

Consider the following linear system

ẋ = y

ẏ = x
(25)

According to (16), the eigenfunctions are

ϕ1(x , y) = y + x

ϕ2(x , y) = y − x
(26)

But, the most general form of the associated eigenfunction should
read

ϕ(x , y) = f [(y − x)(y + x)] (y + x)λ (27)

where f is any function in the class C 1.
We note that λ in (19) can only be either 1 or −1 because the
matrix A only has these two eigenvalues.



Linear system
Example continued

This shows that by taking f from (9) to be any analytic function,
we have new eigenfunctions! for instance, we have

ϕ(x , y) = tanh(y2 − x2)(y + x) (28)

or

ϕ(x , y) =
sin(y2 − x2)

y + x
(29)

as the new candidates for the eigenfunction corresponding to
eigenvalue 1 and -1, respectively.



1D nonlinear system

If we are interested in learning the following one-dimensional
autonomous system

ẋ = F (x), x ∈ M ⊂ R (30)

In this case, by (6), each Koopman eigenpair (ϕ, λ) simply satisfies

dϕ

dx
· F (x) = λϕ (31)

(8) is easy to solve and its solution reads

ϕ(x) = p exp

(∫
λdx

F (x)

)
(32)

where p is an arbitrary constant.

Note: (9) has also been derived by Kutz in his paper [1].



Simple pendulum

The simple pendulum is a classic dynamical system which was
widely studied long time ago. It can be represented by the
following second-order nonlinear differential equation,

ẍ +
g

L
sin(ωx) = 0 (33)

where g is the magnitude of the gravitational field and L the
length of the rod or cord.

In our project, for simplicity, we assume that ω = 1 and
g

L
= 1.

Eq.(33) can be easily written into the following 2D first-order
system,

ẋ = y

ẏ = − sin(x)
(34)



Simple pendulum
Spectrum

For the spectrum of the Koopman operator associated with the
simple pendulum system, we claim that it must lie on the unit
circle of the complex plane C. This is because the simple pendulum
system is a Hamiltonian system with the conservative quantity,

H(x , y) =
1

2
y2 − cos(x) (35)

We notice that any Hamiltonian system preserves the Lebesgue
measure µ, namely the dynamics T preserves µ. By results from
ergodic theory (See lecture slides), we know the Koopman operator
associated with any Hamiltonian system is a unitary operator w.r.t
the domain L2 (M, µ). This shows that the eigenvalues for the
Koopman operator associated with the simple pendulum system
must be a subset of {λ = e iωt | ω ∈ R}



Simple pendulum
Issue with the spectrum

Although we have explicitly demonstrated that all eigenvalues of
the Koopman operator associated with the simple pendulum
system can only lie on the unit circle of the complex plane C, the
tricky question is that what the full spectrum of the Koopman
operator is? This question is essentially important because keep in
mind that not all complex numbers on the unit circle are the
eigenvalues.



Simple pendulum
Eigenfunction

We have derived the Koopman eigenfunction for the simple
pendulum system which reads,

ϕ(x , y) = f (p) exp

(∫
dx√

2 cos(x) + 2p

)λ ∣∣∣∣∣
p=

1

2
y2−cos(x)

(36)

Note: We notice that (13) is only valid for some λ which lies on
the unit circle of the complex plane C.



Simple pendulum
Prediction

With the eigenpair we have derived from Eq.(36), we know how a
given observable g evolves by presenting the following Koopman
spectral decomposition

Ktg(x) =
∞∑
i=1

eλi tci (g)ϕi (x) (37)

where we call each complex value ci the Koopman mode.

Now Let’s move to the next interesting system which is the
Duffing system.



Duffing system

The most general Duffing system is represented by the following
second-order ordinary differential equation(ODE),

ẍ + δẋ + αx + βx3 = γ cos(ωt) (38)

Eq.(38) can be easily rewritten as the following
two-dimensional(2D) first-order system of ODE,

ẋ = y

ẏ = −δy − αx − βx3 + γ cos(ωt)
(39)

where δ, α, β, γ, ω are all given constants.



Duffing system
Koopman eigenfunction

Suppose we are interested in the undamped autonomous
without-force version of (38), namely δ = γ = 0, and

ẋ = y

ẏ = −αx − βx3.
(40)

Then the Koopman eigenfunction for (12) has the following form,

ϕ(x , y) = f (p) exp

∫ λdx√
2p − αx2 − 1

2
βx4


∣∣∣∣∣
p=

1

2
y2+

1

2
αx2+

1

4
βx4

(41)
where f is a C 1 function of a single real variable.



Duffing system
Spectrum of the Koopman operator

Similar to the simple pendulum system, it should not be surprising
that the Duffing system also has a continuous spectrum.
Moreover, since we restrict our attention to the undamped Duffing
without external force (i.e. system (25)), the system is
Hamiltonian and hence preserves the Lebesgue measure under the
function space L2(M, µ). By the similar argument made on the
simple pendulum system, we conclude that the spectrum of the
associated Koopman operator of the Duffing system is a subset of
the complex numbers lying on the unit circle of C.



Duffing system
Hamiltonian quantity

One of the most important quantities for the undamped
without-force Duffing system is the Hamiltonian denoted by
H ≡ H(x , y), which is the Koopman eigenfunction corresponding
to λ = 0, namely

KtH = H (42)

Or equivalently,
∇H · F = 0 (43)

The general solution to (43) reads

H(x , y) = f

(
1

2
y2 +

1

2
αx2 +

1

4
βx4

)
. (44)

Note: Setting f to be the identity map results in the standard
Hamiltonian for Duffing system which reads

H(x , y) =
1

2
y2 +

1

2
αx2 +

1

4
βx4. (45)



A particular 2D system

Based on the work on Duffing system, we can also derive the
Koopman eigenfunctions for the following type of 2D systems
analytically,

ẋ = f (x)g(y)

ẏ = h(x)q(y)
(46)

where f , g , h, and q are assumed to be all in the class C 1 to
guarantee the system(46) has a unique solution.

The following theorem provides the analytical expression for the
Koopman eigenfunctions.



A particular 2D system
Continued

Theorem
The Koopman eigenpair (ϕ, λ) for (16) has the following form,

ϕ(x , y) = f (p) exp

∫ λdx

f (x)g

[
T−1

(
p +

∫ h(x)

f (x)
dx

)]


∣∣∣∣∣
p=

∫g(y)

q(y)

dy−
∫h(x)

f (x)

 dx

where f is in the class of C 1, and T(y) reads

T (y) =

∫
g(y)

q(y)
dy (47)

Note: T−1 exists by the inverse function theorem.



Example
Let’s look at one toy application of the theorem from the last page.
Consider the following 2D nonlinear dynamical system,

ẋ = y

ẏ = y2
(48)

We compute first

T (y) =

∫
y

y2
dy = log(y) =⇒ T−1(y) = ey (49)

and ∫
h(x)

f (x)
dx =

∫
dx = x (50)

Then plugging everything into the expression of ϕ(x , y) results in

ϕ(x , y) = f (log(y)− x) exp

(
λ

y

)
(51)

Exercise: Following the above example, if we take g(y) = yn and
q(y) = yn+1, we also will get a closed form for ϕ(x , y) without an
integral term.



Warning

The theorem is not very useful for the situation when the integral
term involved in the expression of ϕ(x , y) does not have a closed
form (e.g. elliptic integral). In this situation, it almost surely
indicates that the system possesses a continuous spectrum which
we then need to defined its corresponding
eigenmeasure/eigendistribution and the formal eigenfunction will
not exist in the formal sense as we discussed before.



Koopman operator for PDE

Now, let us change our focus to dynamical system represented by
partial differential equations. Before we actually dig into the
Koopman theory for dynamical system on infinite-dimensional state
space, we can see some examples.



Linear Diffusion equation

Linear diffusion equation is also known as the heat equation,
considered as probably the most classical equation in a
undergraduate PDE class. It simply models the transfer of heat on
a given object...

The equation is gievn as follow

ut = αuxx . (52)

where α is a fixed constant.



Burger’s equation

Burger’s equation is a nonlinear PDE which is analytically solvable
by applying the so-called Hopf-Cole transformation to transform
the nonlinear equation into the linear diffusion equation.

For simplicity, we focus on the viscous Burger’s equation

∂u

∂t
+ u

∂u

∂x
=

∂2u

∂x2
(53)

Note: There are much more PDEs besides the above two such as
wave equation, Schodinger equation... If you are interested in
more, simply do a literature review or look them up on Wikipedia.



Infinite-dimensional state space

Based on the linear diffusion equation and Burger’s equation, we
know most PDEs used to model any real-life phenomenon has the
following standard form

∂u(x , t)

∂t
= F [u(x , t)] (54)

where F represents a time-independent nonlinear operator.
Compared with the classical dynamical system represented by ODE
ẋ = F (x), (39) is nothing but a dynamical system sitting on an
infinite-dimensional state space, where in this case F is the
dynamics.



Space of observable

Before we introduce the associated Koopman operator for (34), we
first need to understand what our space of observable is in this
situation. To this end, We need to introduce first the concept of
functional.

Definition
A functional is a mapping from a function space to the complex
plane C.

Definition
We defined the space of observable as the functional space,
denoted by B, which contains all functionals from the field space
to the complex plane C



Examples of functional

1. Let C [0, 1] be the space of continuous functions defined on
[0, 1]. We define the functional ϕ : C [0, 1] → C as follow

ϕ[f ] = f (1) (55)

for any f ∈ C [0, 1].

2. Another example would be

ϕ[f ] =

∫ 1

0
f (x)dx (56)

for any f ∈ C [0, 1].



Koopman operator

Definition
The associated Koopman operator for the system (54) is the
mapping Kt : B → B such that (2) holds.

As we expect it, the only discrepancy between the definition of the
Koopman operator associated with a system represented by PDE
and one represented by a ODE is the space of observables.
Accordingly, there is some minor modification on the definition of
its infinitesimal generator.



Infinitesimal generator

Since, by observation, the family of operators {Kt}t≥0 is a
semigroup, we can define the corresponding infinitesimal generator
U as follow.

Definition
For any functional g ∈ B,

Ug [u] = lim
t→0

Ktg [u]− g [u]

t

=

∫ L

0
F{u(x)}δg [u(x)]

δu(x)
dx

(57)

where
δg [u(x)]

δu(x)
denotes the functional derivative.

We will introduce briefly the functional derivative which is an
important concept in Calculus of Variation.



Infinitesimal generator
Functional derivative

For a given smooth functional g [u], we define its derivative as
follow.

Definition

lim
t→0

g [u + tη]− g [u]

t
=

∫
δg [u]

δu(x)
η(x)dx (58)

where η(x) ∈ C∞
c (R) is an arbitrary test function.

With all these prerequisite knowledge, we are now ready to define
the so-called Koopman eigenfunctional.



Eigenfunctional
The eigenfunctional is defined in a similar fashion as the
eigenfunction that we discussed a while ago.

Definition
The eigenfunctional ϕ[u] is a special functional in B such that

Ktϕλ[u] = eλtϕλ[u] (59)

The following theorem demonstrates the relationship between the
eigenfunctional and the generator U.

Theorem
The eigenfunctional ϕ[u] satisfies

Uϕ[u] = λϕ[u] (60)

Next, we will see an important theorem which can tell us all the
eigenfunctionals in closed form for any system represented by (35)
where the dynamics F is linear.



Eigenfunctional for linear F

Assume that the dynamics F in (39) is linear, and w(x) the
eigenfunction of the adjoint operator of F , namely

F∗{w(x)} = λw(x) (61)

Theorem
The eigenfunctional for the system (35) reads

ϕλ[u] =

∫ L

0
u(x)w(x)dx (62)

The theorem is not hard to prove and we can do it in the next slide.



Proof of the theorem

Proof.
Observe that by (43),

Uϕ[u] =

∫ L

0
(F(u(x)))

δϕ[u]

δu(x)
dx

= lim
ϵ→0

ϕ[u + ϵ (F(u(x)))]− ϕ[u]

ϵ

= lim
ϵ→0

∫ L
0 [u(x) + ϵ (F(u(x)))]wλ(x)dx −

∫ L
0 u(x)dx

ϵ

=

∫ L

0
(F(u(x)))wλ(x)dx

=

∫ L

0
u(x)F∗(w(x))dx

= λ

∫ L

0
u(x)w(x)dx = λϕ[u]

■



Diffusion equation
Basic setting

Let’s now discuss the application of the theorem (62) to some
well-known PDEs. The first one we will see is the diffusion
equation. For simplicity, we assume the coefficient α = 1, so the
equation is ut = uxx . We also assume the solution
u(x , t) ∈ L2 ([0, L]× R+) satisfies the Neumann boundary
condtions which read

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0 (63)

We observe first that the dynamics operator F is

F =
∂2

∂x2
(64)

and it is not hard to show F is self-adjoint via integration by parts,
so F = F∗.



Diffusion equation
Eigenfunctional

To find the eigenfunctional, we compute first the solution to the
following eigenvalue problem of the adjoint dynamics operator F∗

which reads
∂2w

∂x2
= λw (65)

By the standard ODE solving technique together with the
boundary conditions (63), the solution reads

w(x) = cos
(nπx

L

)
(66)

where n = 1, 2, ...
Finally, by Eq.(62), we know the eigenfunctionals associated with
the diffusion equation have the form

ϕn[u] =

∫ L

0
u(x)cos

(nπx
L

)
dx (67)

Exercise: Derive the eigenfunctionals of the diffusion equation with
the Dirichlet boundary conditions.



Burger’s equation
Basic setting

The next example we will see is the viscous Burger’s equation
which is a nonlinear PDE. Although it is nonlinear, but it is
topologically conjugate with the linear diffusion equation so that if
we can compute the associated homeomorphism mapping, we are
guaranteed to obtain all its eigenfunctionals.
First, let us assume the setting is that we have the viscous
Burger’s equation and its solution u(x , t) ∈ L2 ([0, L],R+) satisfies
the Dirichlet boundary conditions which read

u(0, t) = u(L, t) = 0 (68)



Burger’s equation
Cole-Hopf transformation

The Burger’s equation and the diffusion equation is closely related
by the so-called Cole-Hopf transformation

u(x , t) = −2
1

v(x , t)

∂

∂x
v(x , t) (69)

where v(x , t) satisfies

v(x , t) = c(t) exp

(∫ x

0
u(y , t)dy

)
(70)

and c(t) needs to be chosen so that v(x , t) satisfies the diffusion
equation with the Neumann boundary conditions, namely

∂v

∂x
(0, t) =

∂v

∂x
(L, t) = 0 (71)

This means v(x , t) solves the diffusion equation with Neumann
boundary conditions if and only if u(x , t) solves the viscous
Burger’s equation with Dirichlet boundary conditions.



Burger’s equation
Continued

To find the eigenfunctional for Burger’s equation, we compute first
the expression for c(t). To this end, with the boundary conditions,
if we substitute Eq. (55) into the diffusion equation, we have

d

dt
ln (c(t)) =

1

2

(
−∂u(x , t)

∂x

) ∣∣∣∣∣
x=0

(72)

Then, we can create the following candidate for c(t) which reads

c(t) =

(∫ L

0
exp

(
−1

2

∫ x

0
u(y , t)dy

)
dx

)−1

(73)



Burger’s equation
Eigenfunctional

Now let us recall the conjugacy theorem which tells us that ϕD ◦ h
is the eigenfunctional for the Burger’s equation, where ϕD denotes
the eigenfunctional of the diffusion equation, and h the
homeomorphism mapping which is the Hopf-Cole transformation.
Using this fact, we eventually know the eigenfunctional ϕB for the
Burger’s equation reads

ϕB [u] =

∫ L

0

[
c[u] exp

(
−1

2

∫ x

0
u(y)dy

)
− 1

L

]
× cos

(nπx
L

)
(74)

where

c[u] =

(∫ L

0
exp

(
−1

2

∫ x

0
u(y)dy

)
dx

)−1

(75)

and n = 1, 2, ...
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Numerical implementation

Now we have finished the theory part of this project, and let us
turn to see how we can numerically use Koopman theory to train a
neural network.



Quick review of DMD

Given some trajectory data xk, k = 0, . . . ,K , we might make the
assumption that there is some linear transformation of the first
K − 1 terms that gives us the last K − 1 terms, with a residual
term reK−1 left over, where eK−1 = {0, 0, . . . , 1}T . This
relationship can be denoted as

xK = AxK−1 + reK−1

where xK−1 denotes the last K − 1 terms of the trajectory, and
xK−1 denotes the first K − 1 terms.



Quick review of DMD

With dynamic mode decomposition (DMD), we make the
assumption the residual can be safely ignored without too much
error. Then, we can simply solve for A via the calculation

A = xKx
†
K−1

where † denotes the Moore-Penrose pseudo-inverse.



Quick review of DMD

In terms of Koopman theory, this is equivalent to approximating
the infinite dimensional Koopman operator K associated with the
observable g(x) = x by a finite dimensional Koopman matrix A.
The eigenvalues and eigenvectors of A are approximately the
eigenvalues and modes of K.



Quick review of SVD

Actually calculating A is often far too costly, considering it is
(K − 1)× (K − 1). Luckily, we can capture the most ”important”
features via Singular Value Decomposition (SVD). Any m × n
matrix can be factored into a product of a m ×m complex unitary
matrix U, an m × n diagonal matrix Σ with non-negative entries,
and the transpose V ∗ of a complex n × n unitary matrix V .



Quick review of SVD

The diagonal matrix Σ in the SVD contains the singular values of
your original matrix. The SVD is not unique, most software
implementations will provide the SVD where Σ has the diagonal
entries in decreasing order.



Quick review of SVD

The diagonal matrix Σ in the SVD contains the singular values of
your original matrix. The SVD is not unique, most software
implementations will provide the SVD where Σ has the diagonal
entries in decreasing order. SVD may result in some zero entries in
Σ, which gives us a dimensionality reduction of our original matrix.



Quick review of SVD

The diagonal matrix Σ in the SVD contains the singular values of
your original matrix. The SVD is not unique, most software
implementations will provide the SVD where Σ has the diagonal
entries in decreasing order.



Using SVD and DMD

If we substitute in the SVD of xK−1 and rearrange the equation,
we can find the matrix S = U∗xKVΣ−1. It turns out that the
eigenvalues of S are precisely the DMD eigenvalues. For the DMD
modes, we calculate Uei , where ei is the i-th eigenvector of S .



Using SVD and DMD

To save computational cost, we can truncate the SVD of xK−1 by
sizing down the matrices in the SVD primarily by only taking a
subset of the largest diagonal entries of Σ.



EDMD

For Koopman theory, we are interested in the eigenvalues and
Koopman modes of all sorts of observables. Extended DMD
(EDMD) runs the same process just outline, except now we run
the algorithm on g(xK = {g(x2), . . . , g(xK )} and
g(xK−1 = {g(x1), . . . , g(xK−1)}.



Observables

Often, we might not have any good a priori ideas about
observables to pick. This is where neural networks come in. Using
a well-designed autoencoder will allow us to find data-driven
nonlinear observables that hopefully lead to a very good
approximation of the Koopman operator.



Koopman based learning
dlkoopman training architecture



Koopman based learning
dlkoopman prediction architecture



For trajectory prediction, we would take the new initial condition,
encode it through the trained autoencoder layer, advance it in time
through the trained Koopman linear layer, and then decode the
result for the prediction.



For this project, we tested three different implementations of
Koopman neural networks on the Duffing system

▶ autokoopman by Ethan James Lew4

▶ dlkoopman by Galois Inc.5

▶ variant of Deep-Koopman by Dongyang Kuang6

4https://github.com/EthanJamesLew/AutoKoopman
5https://github.com/GaloisInc/dlkoopman
6https://github.com/dykuang/Deep—-Koopman



Duffing System
α = 1, β = 0.4, δ, γ = 0



Duffing System
γ = 0.2



Duffing System
γ = 0.28



Duffing System
γ = 0.29



Duffing System
γ = 0.37



Duffing System
γ = 0.5



Duffing System
γ = 0.65



autokoopman

The autokoopman package does not necessarily rely on deep
Koopman learning to create a model, it may use SINDy or some
other method depending on what the user specifies.



autokoopman

Note: Unfortunately, the autokoopman package is not
well-documented, I could not figure out how to access the
eigenvalues/modes from the trained Koopman matrix, however, it
ended up being the easiest to ask to predict a new initial condition,
and have a reasonable answer.



Koopman based learning
autokoopman training architecture



Duffing system
Simulations with autokoopman



Duffing system
Simulations with autokoopman



Duffing system
Simulations with autokoopman



Duffing system
Simulations with autokoopman



Duffing system
Simulations with autokoopman
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Duffing system
Simulations with autokoopman



Duffing system
Simulations with autokoopman



Duffing system
Simulations with autokoopman



Duffing system
Simulations with autokoopman



Deep Koopman

The Deep Koopman implementation used here is a variant of
Dongyang Kuang’s package, which is itself a modification of
Bethany Lusch’s implementation. 78

7https://github.com/BethanyL/DeepKoopman
8Lusch, B., Kutz, J.N. Brunton, S.L. Deep learning for universal linear

embeddings of nonlinear dynamics. Nat Commun 9, 4950 (2018).
https://doi.org/10.1038/s41467-018-07210-0



Deep Koopman
α = 1, β = 0.4, δ, γ = 0



Deep Koopman
α = 1, β = 0.4, δ, γ = 0



Deep Koopman
α = 1, β = 0.4, δ, γ = 0



Deep Koopman
α = 1, β = 0.4, δ, γ = 0



Deep Koopman
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Deep Koopman
α = 1, β = 0.4, δ, γ = 0



Deep Koopman
α = 1, β = 0.4, δ, γ = 0



Deep Koopman
γ = 0.2
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Deep Koopman
γ = 0.37



Deep Koopman
γ = 0.37



Deep Koopman
γ = 0.37



Deep Koopman
γ = 0.37



Deep Koopman
γ = 0.37



Deep Koopman
γ = 0.5



Deep Koopman
γ = 0.5



Deep Koopman
γ = 0.5



Deep Koopman
γ = 0.5



Deep Koopman
γ = 0.5



Deep Koopman
γ = 0.65



Deep Koopman
γ = 0.65



Deep Koopman
γ = 0.65



Deep Koopman
γ = 0.65



Deep Koopman
γ = 0.65



What about dlkoopman? Well...



dlkoopman

Loss seemed to reduce well, but prediction did not look correct at
all, and eigenvalues were definitely not correct. This is almost
certainly an implementation issue on my part.



dlkoopman

One benefit of dlkoopman is that it comes with a hyperparameter
search method, wherein one can filter down what network sizes and
types will best fit the data.



dlkoopman
α = −1, β = 1, δ = γ = 0



dlkoopman
α = −1, β = 1, δ = γ = 0



dlkoopman
α = −1, β = 1, δ = γ = 0



In conclusion, deep Koopman neural net can weakly identify
Hamiltonian systems, but struggles with higher cycle and chaotic
behavior.


