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Introduction

▶ In our project, we focus on the Koopman theory to investigate
the 2D Duffing system (also called Duffing oscillator).
Koopman theory provides a powerful way to linearize any
given nonlinear dynamical system into an linear space. Such
linearization process is accomplished by ”Koopman
eigenfunction”(see e.g. the lecture sides on chapter 5:
Koopman operator). We present our progress on finding
Koopman eigenfunctions of the Duffing system and also on
general 2-dimensional dynamical system.

▶ We also observe how well the Duffing system can be obtained
purely from generated data and simulated by SINDy, under
various parameter ensembles, and with/without a control term
during training.

Remark: Except the simulation part of this project, it focuses on
autonomous system almost surely.



Linearization

Koopman eigenfunction provides a way to linear the original
nonlinear dynamics into an linear space.

why do we bother to linearize nonlinear dynamics by
Koopman eigenfunction?



Linearization(continued)

Quick recap: Based on our previous lectures, we have studied
the method to linearize any nonlinear system near its fixed
points, and by classifying each fixed point in the linearized
system, we can have much more insights about the behavior
of the original nonlinear system by applying
Hartman-Grobman theorem.

In summary, linearization provides us with insight about
nonlinear dynamics.



Koopman eigenfunction
Definition

Let’s recall that Koopman eigenfunction, denoted by φ, is defined
as follow,

Kt [φ](x) = φ(x)eλt , (1)

where λ ∈ R is the corresponding eigenvalue of φ, and Kt is the
Koopman operator.



Koopman eigenfunction
Importance

Knowing Koopman eigenfunctions of a given system guarantees
analytical solutions to the original system.(why?!)

Pro: This news is definitely a good one for PhD students in
either engineering or physics when they are getting stuck in
solving ODE by using elementary ODE solving techniques.

Con: Unluckily, such eigenfunctions are hard to find for most
systems.



Koopman eigenfunction
Example: Duffing system

In our project, we are interested in the autonomous Duffling
system which is a 2D nonlinear system as follow,

ẍ + δẋ + αx + βx3 = 0. (2)

We find and claim that Koopman eigenfunctions of the
autonomous Duffing system (2) has the following form,

φ(x , y) = f (
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Koopman eigenfunction
Example: Duffing system(continued)

where y(x) in (3) satisfies the following equation,

1

2
y(x)2 +

α

2
x2 +

β

4
x4 = c, (4)

f is any univariate continuously differentiable function, and c ∈ R
is an arbitrary constant.
Remark: It is easy to verify that (3) is indeed the eigenfunction by
back substituting it into (1).



Koopman eigenfunction
General 2D system

Based on our research on the Duffing system, we find that
analytical expression of Koopman eigenfunction for some special
2D nonlinear dynamics can also be constructed successfully.
Such special 2D nonlinear dynamics must have the following form,

ẋ = h(x)w(y), ẏ = s(x)d(y), (5)

for some real-valued, continuous functions h,w , s, d .
The following theorem is the core of this project.



Koopman eigenfunction
General 2D system(continued)

Theorem
The analytical expression of Koopman eigenfunction associated
with any 2D dynamical system with a form as (5) reads,

φ(x , y) = f (T (y)−
∫

s(x)

h(x)
dx) exp(

∫
λdx

h(x)w [T−1(
∫ s(x)

h(x)
dx)]

),

(6)

where T (y) =
∫ w(y)

d(y)
dy is assumed to be invertible, and f is any

univariate continuously differentiable function.



What’s next?

What happens in higher dimensions(e.g. 3D system)?

up to this point, everything is deterministic. So, a natural
question is that what if there exists randomness in the
system? which is usually the case in real-life models.



Stochastic Koopman operator
Definition

The stochastic Koopman operator corresponding to a random
dynamical system, denoted by φ, is defined on the set of functions
f : M ⊂ Rn → C, which is called the observable space, as follow,

Kt [f ](x) = E[f (φ(t, ω)x)]. (7)

Remark: Here, according to the definition of random dynamical
system φ which is from the sides 1, the quantity φ(t, ω)x is a
continuous-time stochastic process which makes the expectation in
(4) meaningful.

1N.Crnjaric-Zic. Stochastic Koopman Operator and the Numerical
Approximations of its Spectral Objects. University of Rijeka, 2019.



Corresponding eigenfunction

We are interested in finding the eigenfunctions associated with the
stochastic Koopman operator which is definied in the same style as
that in (1) (read the previous sides for more information in case
you are interested too).
Further discussion of the stochastic Koopman theory will be
delayed to Math646 as a connection of this project...



SINDy
Origins

Sparse Identification of Nonlinear Dynamics (SINDy) is a
framework using spare regression methods and ideas from
compressed sensing to identify governing equations for a dynamical
system purely from measured data. This framework aims to
optimize the number of functions and terms necessary to represent
the data accurately. This framework was published by Brunton,
Proctor, and Kutz in 2016. 2

2Brunton, S. L., Proctor, J. L., Kutz, J. N. (2016). Discovering governing
equations from data by sparse identification of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences of the United States of
America, 113(15), 3932–3937. https://doi.org/10.1073/pnas.1517384113



SINDy
Idea

For a given system ẋ = f(x), we want to simulate this system into
a data matrix X and solve the following system for Ξ:

Ẋ = Θ(X)Ξ

where the candidate library Θ is of the form

Θ(X) =
[
1 X XP2 XP3 · · · sin(X) cos(X) · · ·

]
The XPn terms refer to the matrix of nth degree interaction terms
between variables. For example XP2 would contain entries like
x21 , x1x2, x2x3, x

2
2 , x

2
3 , etc. for all xi .



SINDy
Idea

With SINDy, we are hoping to find a system to explain the data
accurately and have a small number of functions used in that
system. So SINDy assumes that the coefficient matrix Ξ is sparse,
and uses various sparse regression methods to identify these
coefficients. After training on the data, it will return a symbolic,

functional system in the following form: ẋ = f(x) = ΞT
(
Θ
(
xT

))T



SINDy

3

3Ibid.



SINDy
A note on numerical simulation

Throughout these results, there will be comparisons between a
”true simulation” and a ”model simulation”. The model simulation
is our trained pySINDy4 model. The true simulation is a numerical
simulation of the Duffing equation with the LSODA ODE solver.
Our training data will also be generated using LSODA. Under
certain conditions, the Duffing equation can be quite stiff, making
more common solvers like RK45 infeasible for accurate simulations.
LSODA is an adaptive solver that uses an Adam’s method for
non-stiff portions of solving, and a BDF for stiff portions.5

4Silva, Brian Champion, Kathleen Quade, Markus Loiseau,
Jean-Christophe Kutz, J. Brunton, Steven. (2020). PySINDy: A Python
package for the Sparse Identification of Nonlinear Dynamics from Data.

5Hindmarsh, A C, Petzold, L R. LSODA, Ordinary Differential Equation
Solver for Stiff or Non-Stiff System. NEA.



SINDy
Training

Ensemble training was used, where one numerically simulates
multiple different initial conditions, and gives those to pySINDy to
train on. We used a square lattice of points on
[−10, 10]× [−10, 10] running for 10 time units. We then tested this
trained model on new initial conditions, one inside the ensemble
square, and one outside the square, for either 20 time units (for the
first two results) or 100 time units (third result onward). Later,
when we look at adding the control term in, we will always use the
same initial condition to try and replicate some data.



SINDy
Candidate Library

For all training, We did give SINDy a candidate library containing:

▶ All polynomials of degree 5 (including interaction terms)

▶ Sine and Cosine (each with only one frequency)



SINDy
Duffing equation

The separated Duffing equation using the conditions
ẋ = y , ż = ω, z(0) = 0

ẋ = y

ẏ = −αx − δy − βx3 + γ cos(z)

ż = ω



SINDy
Results

α = 1, δ = 0.8, β = 0.4, γ = 1, ω = 2



SINDy
Results with Initial condition = [-9,9,0]



SINDy
Results with Initial condition = [-9,9,0]



SINDy
Results with initial condition = [-25,19,0]



SINDy
Results with initial condition = [-25,19,0]



SINDy vs. SINDyC
Results

In many applied contexts, we can consider the forcing term
γ cos(ωt) as a control term, meaning we can consider the entire
function as ”known” while training SINDy (called SINDY with
control: SINDyC6). For a certain set of parameters, and the initial
condition (x0, y0, z0) = (1, 0, 0), we can vary γ and observe various
cycles in the system, as well as a chaotic scenario. This parameter
set is
α = −1, β = 1, δ = 0.3, γ will vary, ω = 1.2
Without telling SINDy about the control term, it will have trouble
identifying the α term.

6Brunton, S.L., Proctor, J.L., Kutz, J.N. (2016). Sparse Identification of
Nonlinear Dynamics with Control (SINDYc). arXiv: Dynamical Systems.



SINDy
Results with initial condition = [1,0,0]



SINDy
Results



SINDyC
Idea and Results

If we train SINDy with the control term, we will get much better
results. The following system was identified with all the variable
values of γ.
α = −1, β = 1, δ = 0.3, γ will vary, ω = 1.2



SINDyC
Results with γ = 0.2 (period-1)



SINDyC
Results with γ = 0.2 (period-1)



SINDyC
Results with γ = 0.28 (period-2)



SINDyC
Results with γ = 0.28 (period-2)



SINDyC
Results with γ = 0.29 (period-4)



SINDyC
Results with γ = 0.29 (period-4)



SINDyC
Results with γ = 0.37 (period-5)



SINDyC
Results with γ = 0.37 (period-5)



SINDyC
Results with γ = 0.5 (chaos)



SINDyC
Results with γ = 0.5 (chaos)



SINDyC
Results with γ = 0.65 (period-2)



SINDyC
Results with γ = 0.65 (period-2)



Conclusion

As we can see, SINDy can recover the governing equations of the
Duffing system purely from data, although it may need help in the
form of training with the control term. In some cases, while the
error in the model system may be small, the dynamics of the target
equation may amplify this error strongly. There may also be ways
around this by using more initial conditions during training, or
using ensemble training, where SINDy will generate multiple
different models under different regression methods and
parameterizations and compares the models.


